Abstract

Guided by the six elements of Translational Ecology (TE; i.e., decision-framing, collaboration, engagement, commitment, process, and communication), we showcase the first explicit example of a Translational Science Education (TSE) effort in the coastal redwood ecosystem of Humboldt County, CA. Using iNaturalist, a flexible and free citizen science/crowdsourcing app, we worked with students from grade school through college, and their teachers and community, to generate species lists for comparison among 19 school and non-profit locations spanning a range of urbanization. Importantly, this TSE effort resulted in both learning and data generation, highlighting the ability of a TSE framework to connect and benefit both students and researchers. Our data showed that, regardless of the age of the observers, holding organized BioBlitzes added substantially more species to local biodiversity lists than would have been generated without them. In support of current ecological theory, these data showed an urbanization gradient among sites, with rural sites containing fewer non-native species than urban ones. On the education side, qualitative assessments revealed students and educators remained engaged throughout the project. Future projects would also benefit by establishing quantifiable metrics for assessing student learning from project conception. Throughout the project, the fundamentals of TE were followed with repeated interactions and shared objectives developed over time within trusted community relationships. Such positive human interactions can lead new naturalists to think of themselves as champions of their local biodiversity (i.e., as land stewards). We anticipate that such newly empowered and locally expert naturalists will remain committed to land stewardship in perpetuity and that other scientists and educators are inspired to conduct similar work.

Highlights

  • Resource managers have long known that the conservation of natural resources is not sustainable without the inclusion of the local human community (Shafer 1997; Primack 2012)

  • Translational Science Education these complementary needs of resource management and hands on opportunities for students, we look to Translational Science Education (TSE, Sutherland et al, 2019), a recent outgrowth of the new field of Translational Ecology (TE) that was developed to provide a framework for improving coordination and collaboration between researchers and practitioners in order to produce actionable science (Brunson and Baker 2016; Enquist et al, 2017; Lawson et al, 2017)

  • Our observations added new species to the iNaturalist dataset for the study area, such as the common shiny woodlouse (Oniscus asellus [Linnaeus]; Research Grade (RG)), the granulated ground beetle (Carabus granulatus [Linnaeus]; RG), the collared false darkling beetle (Phryganophilus collaris [LeConte]; RG), and the variegated yellow archangel (Lamium galeobdolon argentatum [(Smejkal) J Duvign.]; RG), an invasive wildflower

Read more

Summary

Introduction

Resource managers have long known that the conservation of natural resources is not sustainable without the inclusion of the local human community (Shafer 1997; Primack 2012). TE makes it possible to better address the enormous problems of the Anthropocene (e.g., climate change, habitat loss, invasive species, and pollution) while taking into account regionally specific ecological and social challenges and perspectives. It focuses limited resources on producing meaningful results through knowledge coproduction (Enquist et al, 2017; Hallett et al, 2017; Lawson et al, 2017). Taking TE one step farther, TSE “develops mutually beneficial partnerships between scientists and educators to help students” (Sutherland et al, 2019: 83) while improving scientific knowledge

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.