Abstract
Voltage-gated sodium channels are critical for membrane excitability. Mutations in the genes coding for these proteins cause diseases related to altered excitability of cardiac or skeletal muscle and neurons. Mutations in the central nervous system-specific voltage-gated sodium channel alpha1 subunit gene (SCN1A) lead not only to seizure syndromes but also to familial hemiplegic migraine. The epilepsies range from benign febrile seizures to the catastrophic epileptic encephalopathy of Dravet syndrome (severe myoclonic epilepsy of infancy). Recently developed animal models of SCN1A mutants recapitulate the human disease. These models exemplify the potential inherent in translational research to debunk preconceived ideas regarding pathogenesis by showing the cellular substrate of Dravet syndrome to be interneurons rather than excitatory cells. This illustrates the key role that basic science plays in the development of targeted novel therapies and, ultimately, in the prevention of devastating genetic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Archives of Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.