Abstract

Previous work showed that E coli threonyl-tRNA synthetase (ThrRS) binds to the leader region of its own mRNA and represses its translation by blocking ribosome binding. The operator consists of four distinct domains, one of them (domain 2) sharing structural analogies with the anticodon arm of the E coli tRNA Thr. The regulation specificity can be switched by using tRNA identity rules, suggesting that the operator could be recognized by ThrRS as a tRNA-like structure. In the present paper, we investigated the relative contribution of the four domains to the regulation process by using deletions and point mutations. This was achieved by testing the effects of the mutations on RNA conformation (by probing experiments), on ThrRS recognition (by footprinting experiments and measure of the competition with tRNA Thr for aminoacylation), on ribosome binding and ribosome/ThrRS competition (by toeprinting experiments). It turns out that: i) the four domains are structurally and functionally independent; ii) domain 2 is essential for regulation and contains the major structural determinants for ThrRS binding; iii) domain 4 is involved in control and ThrRS recognition, but to a lesser degree than domain 2. However, the previously described analogies with the acceptor-like stem are not functionally significant. How it is recognized by ThrRS reamins to be resolved; iv) domain 1, which contains the ribosome loading site, is not involved in ThrRS recognition. The binding of ThrRS probably masks the ribosome binding site by steric hindrance and not by direct contacts. This is only achieved when ThrRS interacts with both domains 2 and 4; and v) the unpaired domain 3, which connects domains 2 and 4, is not directly involved in ThrRS recognition. It should serve as an articulation to provide an appropriate spacing between domains 2 and 4. Furthermore, it is possibly involved in ribosome binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.