Abstract

RPA2 is a subunit of a trimeric replication protein A (RPA) complex important for DNA repair and replication. Although it is known that RPA activity is regulated by post-translational modification, whether RPA expression is regulated and the mechanism therein is currently unknown. eIF3a, the largest subunit of eIF3, is an important player in translational control and has been suggested to regulate translation of a subset of messenger RNAs important for tumorigenesis, metastasis, cell cycle progression, drug response and DNA repair. In the present study, we show that RPA2 expression is regulated at translational level via internal ribosome entry site (IRES)-mediated initiation in response to DNA damage. We also found that eIF3a suppresses RPA2 synthesis and inhibits its cellular IRES activity by directly binding to the IRES element of RPA2 located at -50 to -150 bases upstream of the translation start site. Taken together, we conclude that RPA2 expression is translationally regulated via IRES and by eIF3a and that this regulation is partly accountable for cellular response to DNA damage and survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.