Abstract

A single-species gas flow into vacuum in a constant-section channel is computed by means of the Direct Simulation Monte Carlo method. It is shown that the longitudinal, transverse, and total kinetic temperatures are significantly different in the head part of the flow, which is a consequence of the arising translational nonequilibrium. The flow is almost self-similar in the entire region of flow expansion (except for distributions of the transverse and total kinetic temperatures in the head part of the gas flow), which allows one to predict flow parameters at times greater than those used in simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.