Abstract
This study examined how translational mechanisms regulate the rate of cardiac protein synthesis during canine pressure overload in vivo. Acute aortic stenosis (AS) was produced by inflating a balloon catheter in the ascending aorta for 6 h; sustained AS was created by controlled banding of the ascending aorta. AS caused significant hypertrophy as reflected by increased left ventricular (LV) mass after 5 and 10 days. To monitor LV protein synthesis in vivo, myosin heavy chain (MHC) synthesis was measured by continuous infusion of radiolabeled leucine. Acute AS accelerated the rate of myosin synthesis without a corresponding increase in ribosomal RNA, indicating an increase in translational efficiency. Total MHC synthesis (mg MHC/LV per day) was significantly increased at 5 and 10 days of sustained AS. Total MHC degradation was not significantly altered at 5 days of AS but increased at 10 days of AS in concordance with a new steady state with respect to growth. Translational capacity (mg total RNA/LV) was significantly increased after 5 and 10 days of AS and was preceded by an increase in the rate of ribosome formation. MHC mRNA levels remained unchanged during AS. These findings demonstrate that cardiac protein synthesis is accelerated in response to pressure overload by an initial increase in translational efficiency, followed by an adaptive increase in translational capacity during sustained hypertrophic growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.