Abstract

Ataxia telangiectasia mutated (ATM) protein has been implicated in multiple pathways such as DNA repair, cell cycle checkpoint, cell growth, development, and stem cell renewal. In this study, we demonstrate evidence that ATM is involved in granulocyte macrophage colony-stimulating factor (GM-CSF)-induced dendritic cell (DC) development from bone marrow (BM) cells. Inactivation of ATM protein results in decreased BM proliferation, leading to reduced DC development and their activity for T cell activation. Expression of Jak2, STAT5, and mTOR is suppressed in both wild-type and ATM-null BM prior to GM-CSF stimulation. Activation of those proteins is delayed and prolonged hypophosphorylation of 4EBP1 is observed in ATM-null BM when treated with GM-CSF, although Erk and p38 are similarly expressed and activated in both wild-type and ATM-null BM cell types. Akt is also suppressed in wild-type BM, and transduction of constitutively active Akt or STAT5 in ATM-null BM restores DC development. Together, these results illustrate that ATM deficiency causes impaired initiation of protein translation in BM, leading to immature development of DC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.