Abstract

We have used three mammalian in vitro assays for translational initiation (globin synthesis, methionyl-puromycin synthesis, and ternary complex formation), consisting of defined components, to ask whether sea urchin ( Strongylocentrotus purpuratus) egg and embryo translational components are active in heterologous assays for mammalian components, and to determine to what extent these activities are evolutionarily conserved. A “pH 5 enzyme” fraction prepared from unfertilized eggs and embryos efficiently replaced the rat liver pH 5 fraction in a globin synthesis assay, indicating that the elongation and termination factors and the aminoacyl-tRNAs are compatible with the mammalian translational machinery. The classical schemes for mammalian initiation factor purification yielded low or no detectable activities in the ribosomal salt washes, so a novel procedure was developed to partially purify initiation factors from sea urchin eggs and embryos before testing for activity. A 12,000 g homogenate from unfertilized eggs was fractionated by step elution from phosphocellulose at 100, 300, 600, and 1200 m m salt. Initiation factor activities were found in each salt step as predicted for the mammalian counterparts. The following activities have been detected: eIF2, eIF3/4F, eIF4A, eIF4B, eIF4C, eIF4D, and eIF5. Further fractionation of each elution step yielded preparations enriched in specific initiation factor activities. However, denaturing polyacrylamide gel electrophoresis of the fractions gave complex polypeptide patterns and no clearly identifiable bands corresponding to the mammalian initiation factor polypeptides. In spite of the conservation of factor activity, crude and affinity purified polyclonal antibodies to the mammalian factors did not cross-react with the sea urchin preparations. The demonstration that initiation factor activities are sufficiently conserved to allow their being assayed is the first step in our dissection of the translational machinery of eggs and embryos, and in the complete analysis of the regulation of translation during early development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call