Abstract

To define the coupling mechanism between cardiac load and the rate of protein synthesis, changes in the extent of eIF-4E phosphorylation were measured after imposition of a load. Electrically stimulated contraction of adult feline cardiocytes increased eIF-4E phosphorylation to 34% after 4 h, as compared with 8% phosphorylation in quiescent controls. However, eIF-4E phosphorylation did not increase upon electrical stimulation in the presence of 7.5 mM 2,3-butanedione monoxime, an inhibitor of actin-myosin cross-bridge cycling and active tension development. Treatment of adult cardiocytes with either 0.1 microM insulin or 0.1 microM phorbol 12-myristate 13-acetate increased eIF-4E phosphorylation to 23 and 64%, respectively, but these increases were not blocked by 2,3-butanedione monoxime. In canine models of acute hemodynamic overload in vivo, eIF-4E phosphorylation increased to 23% in response to left ventricular pressure overload as compared with 7% phosphorylation in controls. Acute volume overload had no effect on eIF-4E phosphorylation. These changes in eIF-4E phosphorylation account for differences in anabolic responses to acute pressure versus acute volume overload. These data suggest that eIF-4E phosphorylation is a mechanism by which increased cardiac load is coupled to accelerated rates of protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.