Abstract

Background“Nanomedicine” is the application of purposely designed nano-scale materials for improved therapeutic and diagnostic outcomes, which cannot be otherwise achieved using conventional delivery approaches. While “translation” in drug development commonly encompasses the steps from discovery to human clinical trials, a different set of translational steps is required in nanomedicine. Although significant development effort has been focused on nanomedicine, the translation from laboratory formulations up to large scale production has been one of the major challenges to the success of such nano-therapeutics. In particular, scale-up significantly alters momentum and mass transfer rates, which leads to different regimes for the formation of nanomedicines. Therefore, unlike the conventional definition of translational medicine, a key component of “bench-to-bedside” translational research in nanomedicine is the scale-up of the synthesis and processing of the nano-formulation to achieve precise control of the nanoscale properties. This consistency requires reproducibility of size, polydispersity and drug efficacy.MethodsHere we demonstrate that Flash NanoPrecipitation (FNP) offers a scalable and continuous technique to scale up the production rate of nanoparticles from a laboratory scale to a pilot scale. FNP is a continuous, stabilizer-directed rapid precipitation process. Lumefantrine, an anti-malaria drug, was chosen as a representative drug that was processed into 200 nm nanoparticles with enhanced bioavailability and dissolution kinetics. Three scales of mixers, including a small-scale confined impinging jet mixer, a mid-scale multi-inlet vortex mixer (MIVM) and a large-scale multi-inlet vortex mixer, were utilized in the formulation. The production rate of nanoparticles was varied from a few milligrams in a laboratory batch mode to around 1 kg/day in a continuous large-scale mode, with the size and polydispersity similar at all scales.ResultsNanoparticles of 200 nm were made at all three scales of mixers by operating at equivalent Reynolds numbers (dynamic similarity) in each mixer. Powder X-ray diffraction and differential scanning calorimetry demonstrated that the drugs were encapsulated in an amorphous form across all production rates. Next, scalable and continuous spray drying was applied to obtain dried powders for long-term storage stability. For dissolution kinetics, spray dried samples produced by the large-scale MIVM showed 100% release in less than 2 h in both fasted and fed state intestinal fluids, similar to small-batch low-temperature lyophilization.ConclusionsThese results validate the successful translation of a nanoparticle formulation from the discovery scale to the clinical scale. Coupling nanoparticle production using FNP processing with spray drying offers a continuous nanofabrication platform to scale up nanoparticle synthesis and processing into solid dosage forms.

Highlights

  • Translation research refers to the “bench-to-bedside” enterprise of harnessing knowledge from basic sciences to produce new drugs, devices, and treatment options

  • We demonstrate the scale-up of a nanoformulation process, called Flash NanoPrecipitation (FNP)

  • Scale-up studies on the confined impinging jet mixer (CIJ) mixer have shown that geometric scaling results in identical mixing times [10]

Read more

Summary

Introduction

Translation research refers to the “bench-to-bedside” enterprise of harnessing knowledge from basic sciences to produce new drugs, devices, and treatment options. The end point is the production of a promising new treatment that can be used clinically or commercialized [1]. In the field of nanomedicine, one major bottleneck in the translation from bench to clinic is scale-up. Nanomedicine refers to the biomedical and pharmaceutical applications of nano-sized vehicles for the delivery of therapeutics, such as drugs, vaccines or genetic material [2]. The last few decades have witnessed the rapid progress in research on nanomedicine, scaling-up remains a significant barrier that delays the effective clinical adoption of nanoparticle (NP) formulation [3].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call