Abstract
Calculations of translational self-diffusion coefficient in free-standing smectic films during a series of layer-thinning transitions as the temperature is raised above the bulk smectic-A-isotropic transition have been carried out. A molecular model based upon the random walk theory is applied for calculating the translational diffusion coefficient (TDC) D_{∥} across the smectic film both in the bulk of the film, as well as in the vicinity of the bounding surfaces. Calculations of D_{∥} require the set of the orientational and translational order parameters (OPs) which have been obtained by using the extended McMillan approach with anisotropic forces. The effect of E on the orientational and translational OPs, as well as on the TDC of smectic films has been investigated. A reasonable agreement between the theoretically predicted and the experimentally obtained data on the TDC in the bulk of the partially fluorinated H10F5MOPP film has been obtained. We also found, in agreement with the experimentally observed behavior of D_{∥}(N)(N=25,13,11,10), that the translational diffusion coefficient in the bulk of the film gradually increases as the film thickness N is decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.