Abstract

For autonomous spacecraft close proximity under environments containing multiple obstacles and complicated constraints, incrementally rapid planning approaches stemming from sampling-based methods are investigated in this paper. Exploring planners are separately developed for the impulsive maneuvered translation and the piecewise constant controlled rotation, which, however, is constrained by the pointing limits coupling with relative positions during the proximity. Using a cost-informed parent-connecting strategy originating from dynamic programming as well as a sweeping growth fashion balanced between tree-based and graph-based methods, an asymptotically optimal unidirectional exploration method is proposed to search energy-efficient translational trajectory without collision. As for the rotation planning, the pointing constraints are taken as virtual obstacles in the state-space augmented with time horizon planned by the translation and, accordingly, a bidirectional exploration method is developed to generate constraint-satisfied slew paths with fast convergence rate. Numerical experiments indicate that the proposed sampling-based methods can rapidly return asymptotic optimal translation trajectory and rotation path satisfying collision avoidance and sensor field-of-view constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.