Abstract

The classification and recognition of two-dimensional patterns independently of their position, orientation, and size by using high-order networks are discussed. A method is introduced for reducing and controlling the number of weights of a third-order network used for invariant pattern recognition. The method leads to economical networks that exhibit high recognition rates for translated, rotated, and scaled, as well as locally distorted, patterns. The performance of these networks at recognizing types and handwritten numerals independently of their position, size, and orientation is compared with and found superior to the performance of a layered feedforward network to which image features extracted by the method of moments are presented as input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.