Abstract
The effective integration of MT technology into computer-assisted translation tools is a challenging topic both for academic research and the translation industry. In particular, professional translators consider the ability of MT systems to adapt to the feedback provided by them to be crucial. In this paper, we propose an adaptation scheme to tune a statistical MT system to a translation project using small amounts of post-edited texts, like those generated by a single user in even just one day of work. The same scheme can be applied on a larger scale in order to focus general purpose models towards the specific domain of interest. We assess our method on two domains, namely information technology and legal, and four translation directions, from English to French, Italian, Spanish and German. The main outcome is that our adaptation strategy can be very effective provided that the seed data used for adaptation is ‘close enough’ to the remaining text to be translated; otherwise, MT quality neither improves nor worsens, thus showing the robustness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.