Abstract

Physiological processes of the diamondback moth, Plutella xylostella, larvae parasitized by Cotesia plutellae are altered by several parasitic factors including a polydnavirus, C. plutellae bracovirus (CpBV). Two homologous genes, CpBV15alpha and CpBV15beta, have been proposed as host translation inhibitory factors (HTIFs). This study analyzed their effects on host gene expression at a post-transcriptional level. A proteomic approach using two dimensional electrophoresis revealed that the parasitization resulted in 24.0% (60/250 spots) reduction of gene expression compared to nonparasitized control. It also indicated that the transient expression of CpBV15alpha or CpBV15beta in nonparasitized larvae resulted in 26.0% (65/240 spots) or 28.0% (70/240 spots) reduction, respectively. Seven spots that were not detected in the transiently expressed samples were further analyzed by a tandem mass spectrometry. These proteins were predicted to be associated with host cell signaling and metabolism. To investigate translation inhibitory effects of CpBV15alpha and CpBV15beta, capped mRNA of a storage protein 1 (SP1) of P. xylostella, a common inhibitory target of both HTIFs, was prepared by in vitro transcription and translated in vitro in the presence or absence of recombinant HTIFs prepared from Sf9 cells by recombinant baculoviruses. Translation of SP1 mRNA containing 5'-untranslated region (5'-UTR) was inhibited by both HTIFs. However, translation of SP1 mRNA without 5'-UTR was insensitive to the exposure of both HTIFs. Both HTIFs inhibited the host gene translation in a dose-dependent manner. In addition, these two factors showed cooperative inhibition. This study suggests that CpBV15alpha and CpBV15beta inhibit host mRNAs directly by acting on translation machinery, in which 5'-UTR of target mRNAs would be required for the inhibitory action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.