Abstract
During translation, mRNAs 'compete' for shared resources. Under stress conditions, during viral infection and also in high-throughput heterologous gene expression, these resources may become scarce, e.g. the pool of free ribosomes is starved, and then the competition may have a dramatic effect on the global dynamics of translation in the cell. We model this scenario using a network that includes m ribosome flow models (RFMs) interconnected via a pool of free ribosomes. Each RFM models ribosome flow along an mRNA molecule, and the pool models the shared resource. We assume that the number of mRNAs is large, so many ribosomes are attached to the mRNAs, and the pool is starved. Our analysis shows that adding an mRNA has an intricate effect on the total protein production. The new mRNA produces new proteins, but the other mRNAs produce less proteins, as the pool that feeds these mRNAs now has a smaller abundance of ribosomes. As the number of mRNAs increases, the marginal utility of adding another mRNA diminishes, and the total protein production rate saturates to a limiting value. We demonstrate our approach using an example of insulin protein production in a cell-free system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.