Abstract
The gene encoding translation initiation factor 4E (eIF-4E) from Saccharomyces cerevisiae was randomly mutagenized in vitro. The mutagenized gene was reintroduced on a plasmid into S. cerevisiae cells having their only wild-type eIF-4E gene on a plasmid under the control of the regulatable GAL1 promoter. Transcription from the GAL1 promoter (and consequently the production of wild-type eIF-4E) was then shut off by plating these cells on glucose-containing medium. Under these conditions, the phenotype conferred upon the cells by the mutated eIF-4E gene became apparent. Temperature-sensitive S. cerevisiae strains were identified by replica plating. The properties of one strain, 4-2, were further analyzed. Strain 4-2 has two point mutations in the eIF-4E gene. Upon incubation at 37 degrees C, incorporation of [35S]methionine was reduced to 15% of the wild-type level. Cell-free translation systems derived from strain 4-2 were dependent on exogenous eIF-4E for efficient translation of certain mRNAs, and this dependence was enhanced by preincubation of the extract at 37 degrees C. Not all mRNAs tested required exogenous eIF-4E for translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.