Abstract

BackgroundPhotosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from CO2 and water, as part of the development of sustainable future biotechnological applications. The engineering approaches, however, are still limited by the lack of comprehensive information on most optimal expression strategies and validated species-specific genetic elements which are essential for increasing the intricacy, predictability and efficiency of the systems. This study focused on the systematic evaluation of the key translational control elements, ribosome binding sites (RBS), in the cyanobacterial host Synechocystis sp. PCC 6803, with the objective of expanding the palette of tools for more rigorous engineering approaches.ResultsAn expression system was established for the comparison of 13 selected RBS sequences in Synechocystis, using several alternative reporter proteins (sYFP2, codon-optimized GFPmut3 and ethylene forming enzyme) as quantitative indicators of the relative translation efficiencies. The set-up was shown to yield highly reproducible expression patterns in independent analytical series with low variation between biological replicates, thus allowing statistical comparison of the activities of the different RBSs in vivo. While the RBSs covered a relatively broad overall expression level range, the downstream gene sequence was demonstrated in a rigorous manner to have a clear impact on the resulting translational profiles. This was expected to reflect interfering sequence-specific mRNA-level interaction between the RBS and the coding region, yet correlation between potential secondary structure formation and observed translation levels could not be resolved with existing in silico prediction tools.ConclusionsThe study expands our current understanding on the potential and limitations associated with the regulation of protein expression at translational level in engineered cyanobacteria. The acquired information can be used for selecting appropriate RBSs for optimizing over-expression constructs or multicistronic pathways in Synechocystis, while underlining the complications in predicting the activity due to gene-specific interactions which may reduce the translational efficiency for a given RBS-gene combination. Ultimately, the findings emphasize the need for additional characterized insulator sequence elements to decouple the interaction between the RBS and the coding region for future engineering approaches.

Highlights

  • Photosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from ­CO2 and water, as part of the development of sustainable future biotechnological applications

  • In order to overcome the constraints, systematic synthetic biology approaches relying on validated genetic control elements, modular assembly systems and optimized expression strategies are currently being evaluated in cyanobacterial hosts such as Synechocystis sp

  • The remaining seven ribosome binding sites (RBS) sequences derived either directly from native highly expressed cyanobacterial genes (Table 2; S2–S5), or from expression constructs designed for Synechocystis (Table 2; S1, S6, S7), and had not previously been systematically compared for efficiency

Read more

Summary

Introduction

Photosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from ­CO2 and water, as part of the development of sustainable future biotechnological applications. In response to increasing environmental concerns and exponentially growing demand for consumer products, there is an urgent global need to find sustainable alternatives for different carbon-based chemicals which are currently derived from non-renewable sources. As part of this development, photosynthetic cyanobacteria have been studied as potential next-generation biotechnological host organisms for the production of desired chemicals directly from atmospheric ­CO2 and water, using solar radiation as energy [1, 2].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.