Abstract

Characterization of shared patterns of RNA expression between genes across conditions has led to the discovery of regulatory networks and novel biological functions. However, it is unclear if such coordination extends to translation, a critical step in gene expression. Here, we uniformly analyzed 3,819 ribosome profiling datasets from 117 human and 94 mouse tissues and cell lines. We introduce the concept of Translation Efficiency Covariation (TEC), identifying coordinated translation patterns across cell types. We nominate potential mechanisms driving shared patterns of translation regulation. TEC is conserved across human and mouse cells and helps uncover gene functions. Moreover, our observations indicate that proteins that physically interact are highly enriched for positive covariation at both translational and transcriptional levels. Our findings establish translational covariation as a conserved organizing principle of mammalian transcriptomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.