Abstract

Sweating skin models and instrumented thermal manikins are commonly used to assess the heat stress potential of materials used in protective clothing. This research describes the relationship observed between heat loss through firefighter turnout ensembles measured using a sweating thermal manikin and that measured with a guarded sweating hot plate. Materials and garment level instrument measures are compared on the basis of their ability to predict human physiological responses related to heat stress in firefighter turnout systems. Sweating hot plate and manikin test results for selected firefighter turnout ensembles are compared to human wear studies in which firefighter turnout ensembles were worn in different environmental conditions. Sweating manikin tests are used to explain differences in the human physiological response and how these measures are related to turn-out heat transfer properties measured using a sweating hot plate. This study confirms the utility of sweating manikins in characterizing the effects of clothing design, fit, and layers on heat and moisture transfer. Thermal manikins are shown to be valuable tools for evaluating the distribution of heat loss through different areas of protective gear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call