Abstract

Conodont research has long been divided between utilitarian applications to solve geological problems versus analysis of their paleobiology. However, recent advances in conodont functional analysis allow these independent stands of research to be unified, decoding the functional implications of their morphological variation. We demonstrate this using synchrotron tomography and finite element analysis, informed by occlusal and microwear analyses, to analyze functionally the classic evolutionary sequence of the genus Polygnathus. Our study shows that the evolution of the platform in Polygnathus occurred to accommodate and dissipate the stress accumulation derived from the tooth-like function that the P 1 elements performed, suggesting that this recurrent motif of conodont evolution represents an adaptive response to recurrent functional selective pressures. Our study establishes a framework in which the functional ecology of conodonts can be read from their rich taxonomy and phylogeny, representing an important attempt to understand the role of this abundant and diverse clade in the Phanerozoic marine ecosystems.

Highlights

  • Conodonts are major components of Phanerozoic marine ecosystems; they have a wide geographical and temporal distribution, and are characterized by rapid morphological evolution through their long stratigraphic ranges, from late Cambrian to end-Triassic

  • Our study is focused on the morphological evolution of the earliest species in which its characteristic dorsal platform developed from a blade-like ancestral morphology

  • The occlusal model was corroborated with microwear data from isolated P1 elements of P. xylus from elements associated with the clusters

Read more

Summary

Introduction

Conodonts are major components of Phanerozoic marine ecosystems; they have a wide geographical and temporal distribution, and are characterized by rapid morphological evolution through their long stratigraphic ranges, from late Cambrian to end-Triassic Since their discovery, the history of conodont research has been split between their applications to solve utilitarian geological problems versus their paleobiology. Our study is focused on the morphological evolution of the earliest species in which its characteristic dorsal platform developed from a blade-like ancestral morphology This transformation is a recurring evolutionary pattern in conodonts (Sweet, 1988) for which our study seeks a general interpretation, attempting to elucidate the role of this abundant and diverse clade in Phanerozoic marine ecosystems

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.