Abstract
Dyadic semantics is a sort of non-truth-functional bivalued semantics introduced in Caleiro et al. (in: Beziau J-Y (ed) Logica Universalis, Birkhauser, Basel, pp 169–189, 2005). Here we introduce an algorithmic procedure for constructing conservative translations of logics characterised by dyadic semantics into classical propositional logic. The procedure uses fresh propositional variables, which we call hidden variables, to represent the indeterminism of dyadic semantics. An alternative algorithmic procedure (not based on dyadic semantics) for constructing conservative translations of any finite-valued logic into classical logic is also introduced. In this alternative procedure hidden variables are also used, but in this case to represent the degree of true or falsehood of propositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.