Abstract

Abadi et al. introduced the dependency core calculus (DCC) as a unifying framework to study many important program analyses such as binding time, information flow, slicing, and function call tracking. DCC uses a lattice of monads and a nonstandard typing rule for their associated bind operations to describe the dependency of computations in a program. Abadi et al. proved a noninterference theorem that establishes the correctness of DCC's type system and thus the correctness of the type systems for the analyses above.In this paper, we study the relationship between DCC and the Girard-Reynolds polymorphic lambda calculus (System F). We encode the recursion-free fragment of DCC into F via a type-directed translation. Our main theoretical result is that, following from the correctness of the translation, the parametricity theorem for F implies the noninterference theorem for DCC. In addition, the translation provides insights into DCC's type system and suggests implementation strategies of dependency calculi in polymorphic languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.