Abstract

The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a ‘sea’ of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation.

Highlights

  • The environment receives antibiotics through a combination of direct application, as well as indirect release through pharmaceutical manufacturing, sewage and animal manure [1,2]

  • The Quality Premium Programme (QPP) in 2015/16 aimed to reduce antibiotic over-use and inappropriate prescribing through a reduction in: 1. the number of antibiotics prescribed in primary care by 1% from each Clinical Commissioning Group (CCG’s) 2013/14 value; 2. the proportion of broad-spectrum antibiotics prescribed in primary care

  • This study focused on two questions that explore the link between antibiotic use and environmental impact: 1. To what extent might current macrolide and fluoroquinolone prescribing contribute to antibiotic resistance selection in sewage-impacted rivers in southern England?

Read more

Summary

Introduction

The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure [1,2]. As part of a One Health approach, the global agenda aims to reduce antibiotic use and misuse in human, animal and agriculture with downstream benefits to the environment [3,4,5,6]. The QPP aims to reduce prescriptions of co-amoxiclav, cephalosporins and fluoroquinolones by 10% (from each CCG’s 2013/14 value) as a percentage of the total number of antibiotics prescribed in primary care, or to be below the 2013/14 median proportion for English CCGs (11.3%), whichever represents the smallest reduction

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call