Abstract

The binding of [5‘-3H]inosine to human purine nucleoside phosphorylase results in an equilibrium binding isotope effect (BIE) of 1.5%, and transition state formation causes an intrinsic KIE of 4.7%. These values reflect atomic vibrational distortions in the 5‘-C−H bonds upon formation of the Michaelis complex and transition state. The degree of atomic distortion for catalysis is compared to that for binding of transition state analogues. Similar radiolabeled forms of the transition-state analogues ImmH and DADMe-ImmH gave large 5‘-3H BIEs of 12.6% and 29.2%, respectively. Greater bond distortions occur upon complex formation with transition-state analogues, supporting weaker distortional forces at the transition state than in the formation of complexes with transition-state analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.