Abstract

Recent studies have shown that tuning a dielectric barrier discharge (DBD) in the medium-frequency range (MF: from 0.3 to 3 MHz) allows a low-power and a high-power mode to be sustained. In the present article the effect of the driving frequency on a DBD is studied from the low-frequency range (LF: from 30 to 300 kHz) to the high-frequency range (HF: from 3 to 30 MHz). This is achieved using fast imaging together with electrical and spectroscopic diagnostics. At every frequency, a diffuse discharge is sustained. It is observed that at 25 kHz the discharge is an atmospheric-pressure glow discharge (APGD) while at 15 MHz the discharge behaves as a capacitive discharge in the RF-α mode. The usual LF APGD behavior is observed up to 100 kHz. Above 200 kHz, the positive column remains during the whole cycle so that the hybrid mode is sustained. At 5 MHz, the hybrid mode finally turns into the RF-α mode. In addition to the LF APGD, RF-α and hybrid modes obtained when the applied voltage is significantly higher than the ignition value, two other modes can be reached at low applied voltage. A Townsend-like mode is achieved from 50 to 100 kHz while in the medium-frequency range, the Ω mode is sustained. Moreover, only from 1.0 to 2.7 MHz there is a large hysteresis occurring when the discharge transits back and forth from the Ω to the hybrid mode. It is also found that when the frequency increases from 25 kHz to 15 MHz, the rms current increases over two orders of magnitudes while the rms voltage decreases by about 60%. The gas temperature estimated from N2 rotational spectra is always close to room temperature but the discharge is more energy efficient (in the HF range) as a lower fraction of energy turns into gas heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call