Abstract

Documenting trait transitions among species with dimorphic flowers can help to test whether similar patterns of selection are responsible for divergence in floral traits among different species. Heterostyly is thought to promote outcrossing. Theory suggests that the evolutionary transition from heterostylous to homostylous flowers should be accompanied by a reduction in floral size in which pollen size and style length are expected to covary. Patterns of such correlated floral trait evolution have not, however, been widely examined. The evolutionary history of heterostyly and homostyly was reconstructed from a molecular phylogeny of 13 species of Fagopyrum and two outgroups, based on one nuclear gene (nrITS) and three chloroplast regions (matK, atpB-rbcL, and psbA-trnH spacer). Floral traits of nine Fagopyrum species including pollen number and size, as well as stigma depth (length of the capitate stigma), were measured and ancestral characters of the herkogamic condition were reconstructed. Three transitions from distyly to homostyly were observed. In two transitions, flower size (corolla diameter, pedicel length), herkogamy (stigma-anther distance) and pollen production decreased, but stigma depth and pollen size did not. Changes of anther height and style length were inconsistent. The predicted positive relationship between style length and pollen size in the two transitions to homostyly was not observed. Floral evolution accompanying transitions to homostyly in Fagopyrum were found to be consistent with predictions of mating system evolution theory, and the correlation of traits in distylous vs. homostylous species revealed that pollen size generally correlates with stigma depth rather than style length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call