Abstract

Wildfires play a fundamental role in Land Use/Land Cover (LULC) change dynamics by burning vegetation in forested and rural areas and by affecting human infrastructures. Conversely, LULC can disturb fire regime by altering vegetation cover, conditioning subsequent transitions, and acting on fuel loads and continuity. Though there is an evident mutual influence between wildfires and LULC changes, a rigorous quantification of their reciprocal effects in Europe has never been performed before. To fill this gap, in the present study we developed a methodology allowing the evaluation of different indicators for the quantitative assessment and a better understanding of the transitions among LULC classes and Burnt Areas (BA) that occurred in Europe within the last two decades (2000 – 2020).Our analyses revealed that the two LULC classes which had experienced major changes were Forests (44%), and Scrubs and/or herbaceous vegetation associations (32%). As a general trend, within the five European Mediterranean Countries more prone to wildfires (Portugal, Spain, France, Italy, and Greece) we found a decrease in the classes Forests and Arable land, and an increase in Scrubs and/or herbaceous vegetation associations, suggesting the impact of wildfires in shaping the natural and rural landscape. This assumption was better evaluated and confirmed by the following analyses, performed at both the European and national levels. Results showed that most of the BA have occurred in Forests (42% for the entire Europe), with a predominance in Coniferous forests; the subsequent transitions from BA were generally to Transitional woodland/shrub or again to BA. This last indicates a high frequency of wildfires in a given area, while the first transition can be partially due to the regeneration/recolonization of the vegetation after a wildfire event. Outcomes for the single countries followed almost the same trend.Overall, our results confirm the existence of a strong relationship between wildfires and LULC changes in Europe, which have been quantified in the present study. These findings are in line with previous research and provide a deep insight into the process at the global and local levels, paving the way for further analyses on fire intensity and frequency with coupled environmental elements of land cover and climate changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.