Abstract

Resilience-based frameworks, founded upon the existence of multiple attractors and regime shifts, have long been applied to complex dynamics of semiarid systems. Utilizing seed addition tests in experimental plantings along grazing gradients, we applied an increase-when-rare criterion to identify bidirectional (states can invade each other) and directional (only one state can invade) transitions among vegetation states characteristic of California grasslands over fiveyears. Annual forage and medusahead grasslands were able to invade each other at all grazing intensities, indicating coexistence. Directional transitions involving invasion of native bunchgrass by other species occurred as grazing intensity increased; recovery (transitions to natives) did not occur at low grazing. While directional transitions at some grazing intensities were accompanied by state persistence at others, we found little evidence for persistence of alternative states at any grazing intensity. Our results suggest that grazing can affect resilience by causing hard-to-reverse transitions, but rarely produces alternative states. However, variation in precipitation seems to dominate grazing responses, supporting the applicability of the nonequilibrium concept in our study system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.