Abstract

The establishment of electrocatalysts with bifunctionality for efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic environments is necessary for the development of proton exchange membrane (PEM) water electrolyzers for the production of clean hydrogen fuel. RuIr alloy is considered to be a promising electrocatalyst because of its favorable OER performance and potential for HER. Here, the design of a bifunctional electrocatalyst with greatly boosted water-splitting performance from doping RuIr alloy nanocrystals with transition metals that modify electronic structure and binding strength of reaction intermediates is reported. Significantly, Co-RuIr results in small overpotentials of 235 mV for OER and 14 mV for HER (@ 10 mA cm-2 current density) in 0.1 m HClO4 media. Therefore a cell voltage of just 1.52 V is needed for overall water splitting to produce hydrogen and oxygen. More importantly, for a series of M-RuIr (M = Co, Ni, Fe), the catalytic activity dependence at fundamental level on the chemical/valence states is used to establish a novel composition-activity relationship. This permits new design principles for bifunctional electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call