Abstract

Two-dimensional (2D) ferromagnetic materials with intrinsic half-metallicity are highly desirable for nanoscale spintronic applications. Here, we predict a new and stable family of 2D transition-metal dihydride (MH2; M = Sc, Ti, V, Cr, Fe, Co, Ni) monolayers with novel properties. Our density functional theory computation shows that CoH2 and ScH2 monolayers are ferromagnetic metals, while the others are antiferromagnetic semiconductors. In particular, the CoH2 monolayer is a perfect half-metal with a wide spin gap of 3.48 eV. The ScH2 monolayer can also possess half-metallicity through hole doping. Most importantly, our Monte Carlo simulations show that the CoH2 monolayer possesses an above-room-temperature Curie point (339 K), while that of the ScH2 monolayer can also reach 160 K. A synthetic approach is proposed to realize CoH2 and ScH2 monolayers in the laboratory. Notably, their half-metallicity can be well maintained on substrates. The new family of MH2 monolayers are promising functional materials for spintronic applications due to their novel magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.