Abstract
Pulse-modulated dielectric barrier discharge plasma actuators are applied to the problem of flow separation on a Hermes 450 unmanned air vehicle V-tail panel. Risk-reduction airfoil experiments were conducted followed by full-scale wind tunnel tests. Silicone-rubber based actuators were calibrated and subsequently retrofitted to both the airfoil and the panel. A lightweight (1 kg), flightworthy high-voltage generator was used to drive the actuators. Airfoil and full-scale panel wind tunnel experiments showed a mild sensitivity to actuation reduced frequencies and duty cycles. On the panel, actuation produced a significant effect on post-stall control authority: for \(17^{\circ }<\alpha <22^{\circ }\) a 100% increase in the post-stall lift coefficient was achieved; leading edge separation was prevented up to angles of attack of 30\(^{\circ }\); and hysteresis was virtually eliminated. Future research will focus on integrating the actuators into the panel geometry, implementing thicker dielectric materials and flight-testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.