Abstract
This paper reports the characteristics of wall pressure fluctuations in the transition region of the flow over axisymmetric bodies. Measurements are conducted in a low noise wind tunnel to obtain the boundary-layer flow field, the local static pressures, and the wall pressure fluctuations using hot wires, micromanometers and flush-mounted microphones. The spatial and the temporal developments of Tollmien-Schlichting (T-S) waves were first observed in the time domain. The wall pressure fluctuations in the transitional boundary-layer flows were of intermittent pulses and intensified as they were convected downstream at typically 63% of the upstream velocity. The Wigner-Ville distributions are then obtained to examine the energy evolution jointly in time and in frequency. The center frequency of the T-S wave is decreased with increases of the boundary-layer thickness and the bandwidth of the energy distribution is broadened as the local Reynolds number is increased. Finally the nondimensional spectra of the transitional wall pressure fluctuations scaled on the outer variables was obtained and it was then found that the characteristic frequency of the T-S wave was related to the outer variables as omegadelta( *)/U(infinity) approximately 0.2. The peak level of the pressure fluctuations during late transition at the characteristic frequency is about 10 dB higher than that of the fully developed flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.