Abstract

The transitional free convection flow and heat transfer within attics in cold climate are investigated using 3-D numerical simulations for a range of Rayleigh numbers from 103 to 106 and height-length ratios from 0.1 to 1.5. The development process of free convection in the attic could be classified into three-stages: an initial stage, a transitional stage, and a fully developed stage. Flow structures in different stages including transverse and longitudinal rolls are critically analyzed in terms of the location and strength of convection rolls and their impacts on the heat transfer. The transition unsteady flow and asymmetry flow in the fully developed stage is discussed for the fixed height-length ratio 0.5. Various flow regimes are given in a bifurcation diagram in the parameter space of Rayleigh numbers (102 < Ra < 107) for height-length ratios (0.1 < A < 1.5). The time series of heat transfer rate through the bottom wall is quantified for different height-length ratios. The overall heat transfer rate for the low Prandtl fluid (Pr = 0.7) could be enhanced based on 3-D flow structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.