Abstract

Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5–2.7 Ma) surface-water assemblages were characterized mainly by cold–temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical surface fauna suggests that the inflow of the Tsushima Warm Current into the Japan Sea via a southern strait began at 1.7 Ma. The opening of the southern strait may have occurred after the subsidence of southwestern Japan.

Highlights

  • Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands

  • The aim of this article is to review the literature on the microfossil assemblages in the Japan Sea, focusing on calcareous nannofossils, diatoms, radiolarians, foraminifera, and ostracods during the Late Pliocene to Early Pleistocene transition (3.5–0.8 Ma), and to discuss the relationships between the changes in these assemblages and both global climatic changes and local or regional tectonics

  • According to Kamikuri and Motoyama (2007), who analyzed the radiolarian assemblages from Deep Sea Drilling Project (DSDP) site 302, the Pliocene radiolarian assemblages contained temperate-water species, such as the Actinomma medianum group and Lithelius minor, which are minor species during the Pleistocene, whereas the subtropical species appeared after 2.2 Ma. These results suggest that in the Early Pleistocene, the temperate surface water entering the Japan Sea via the northern strait was replaced by subtropical water entering via the southern strait

Read more

Summary

Introduction

Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Late Pliocene (3.5–2.7 Ma) surface-water assemblages were characterized mainly by cold–temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. Review The Japan Sea is a marginal sea in the northwestern Pacific Ocean bounded by the Eurasian continent, the Japanese Islands, and Sakhalin Island (Fig. 1). This sea has deep basins with depths to 3700 m, it is connected to adjacent marginal seas and the Pacific Ocean by only four shallow straits, with sill depths of 130 m or less. The deep-water biofacies in the JSPW are isolated from the open Pacific Ocean (e.g., Naganuma 2000)

Objectives
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.