Abstract

The underlying structural changes that provide the perceived unique properties of ultrastable metallic glasses (SMGs) are presently not well understood. Herein, Zr50Cu44.5Al5.5 and Zr50Cu41.5Al5.5Mo3 thin film metallic glasses (TFMGs) fabricated by direct current magnetron sputtering deposition at room temperature were investigated systematically. By tuning the deposition rate from ~250 nm/min to ~5 nm/min, the thermophysical and mechanical properties, as well as the corresponding structural evolution of TFMGs was examined. A clear transition from bulk-like to ultrastable-like behaviour was observed, whereby reducing the deposition rate results in a gradual enhancement in thermal stability and mechanical properties. A distinct structural difference was observed between conventional metallic glasses (MGs) and SMGs, with the latter yielding a more homogeneous and looser-packed structure under greater induced geometric frustration. SMGs show a greater resistance to crystallization as seen by a change in crystallization pathway. The results also show that MGs with more pronounced slow β relaxation have a greater potential to form SMGs with more significant variations in key properties. This work provides new insights into the structural evolution of SMGs with varying deposition rate and has implications in the design and fabrication of SMGs by considering their relaxation dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.