Abstract

We study regimes of strong and weak generalized synchronization in chaotically forced nonlinear flows. The transition between these dynamical states can occur via a number of different routes, and here we examine the onset of weak generalized synchrony through intermittency and blowout bifurcations. The quantitative characterization of this dynamical transition is facilitated by measures that have been developed for the study of strange nonchaotic motion. Weak and strong generalized synchronous motion show contrasting sensitivity to parametric variation and have distinct distributions of finite-time Lyapunov exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.