Abstract
In this study, we investigate the transition between the Newtonian and the viscoelastic regimes during the pinch-off of droplets of dilute polymer solutions and discuss its link to the coil-stretch transition. The detachment of a drop from a nozzle is associated with the formation of a liquid neck that causes the divergence of the local stress in a vanishingly small region. If the liquid is a polymer solution, this increasing stress progressively unwinds the polymer chains, up to a point where the resulting increase in the viscosity slows down drastically the thinning. This threshold to a viscoelastic behavior corresponds to a macroscopic strain rate. In the present study, we characterize the variations of with respect to the polymer concentration and molar weight, to the solvent viscosity, and to the nozzle size, i.e., the weight of the drop. We provide empirical scaling laws for these variations. We also analyze the thinning dynamics at the transition and show that it follows a self-similar dynamics controlled by the time scale c-1. This characteristic time is different and always shorter than the relaxation time of the polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.