Abstract

We used both conventional rheometry and nuclear magnetic resonance (NMR) velocimetry to study shear banding in a solution of 200 mM cetylpyridinium chloride and 120 mM sodium salicylate in 0.5 M sodium chloride. The solution behaved as a Maxwell fluid up to frequencies of 10 Hz. Theoretical predictions of critical strain rate and shear stress were in good agreement with measurements obtained using controlled strain rate rheometry. Using NMR velocimetry, we observed convincing evidence of shear banding in capillary flow with a band of very high, approximately constant, shear rate next to the wall that grew in thickness with increasing apparent shear rate. We believe that the shear rate in this band (∼600 s−1) marks the beginning of the hypothesized high shear rate limb of the flow curve. We also observed shear banding in both the cylindrical Couette and cone-and-plate geometries. Shear banding started at shear rates that were approximately the same as the critical shear rate measured with the mechanical rh...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.