Abstract

We study the transition from the collisionless to the hydrodynamic regime in a two-component spin-polarized mixture of 40K atoms by exciting its dipolar oscillation modes inside harmonic traps. The time evolution of the mixture is described by the Vlasov–Landau equations and numerically solved with a fully three-dimensional concurrent code. We observe a master/slave behaviour of the oscillation frequencies depending on the dipolar mode that is excited. Regardless of the initial conditions, the transition to hydrodynamics is found to shift to lower values of the collision rate as the temperature decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.