Abstract
HBeAg seroconversion during the natural history of chronic hepatitis B (CHB) is associated with a strong drop in serum HBV DNA levels and a reduction of intrahepatic covalently closed circular DNA (cccDNA) content. Of particular interest is the transition to HBeAg-negative chronic infection (ENCI). ENCI, previously known as inactive carrier state, is characterized by very low or negative viremia and the absence of liver disease. The molecular mechanisms responsible for the transition to ENCI and for the control of viral replication in ENCI are still poorly understood. To identify which step(s) in the viral life cycle are controlled during the transition to ENCI, we quantified cccDNA, pre-genomic RNA (pgRNA), total HBV RNA and DNA replicative intermediates in 68 biopsies from patients in different phases of CHB. HBeAg seroconversion is associated with a reduction of cccDNA amounts as well as transcriptional activity. Silencing of cccDNA is particularly pronounced in ENCI, where there was ~46 times less pgRNA per cccDNA compared to HBeAg-negative CHB. Furthermore, a subgroup of patients with HBeAg-negative CHB can be characterized by reduced replication efficiency downstream of pgRNA. The reduction in serum viral load during the transition to ENCI seems to primarily result from strong inhibition of the transcriptional activity of cccDNA which can be maintained in the absence of liver disease. During the natural course of chronic hepatitis B virus infections, the immune response can gain control of viral replication. Quantification of viral DNA and RNA in liver biopsies of patients in different stages of chronic hepatitis B allowed us to identify the steps in the viral life cycle that are affected during the transition from active to inactive disease. Therapeutic targeting of these steps might induce sustained inhibition of viral transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.