Abstract

We present an alternative approach to finite-size effects around the synchronization transition in the standard Kuramoto model. Our main focus lies on the conditions under which a collective oscillatory mode is well defined. For this purpose, the minimal value of the amplitude of the complex Kuramoto order parameter appears as a proper indicator. The dependence of this minimum on coupling strength varies due to sampling variations and correlates with the sample kurtosis of the natural frequency distribution. The skewness of the frequency sample determines the frequency of the resulting collective mode. The effects of kurtosis and skewness hold in the thermodynamic limit of infinite ensembles. We prove this by integrating a self-consistency equation for the complex Kuramoto order parameter for two families of distributions with controlled kurtosis and skewness, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.