Abstract
We investigate scenarios that create chaotic attractors in systems of ordinary differential equations (Vallis, Rikitaki, Rossler, etc.). We show that the creation of chaotic attractors is governed by the same mechanisms. The Feigenbaum bifurcation cascade is shown to be universal, while subharmonic and homoclinic cascades may be complete, incomplete, or not exist at all depending on system parameters. The existence of a saddle-focus equilibrium plays an important and possibly decisive role in the creation of chaotic attractors in dissipative nonlinear systems described by ordinary differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.