Abstract
We investigate the effects of long-ranged dipole-dipole potential on the transition temperature of a weakly interacting Bose gas. We apply the two-fluid model to derive the energy spectra of the thermal and the condensate parts. From the interaction modified spectra of the system, the formula for the shift of transition temperature was derived. Compared to the conventional weakly interacting Bose system with contact potential only where thermal effect is larger, we find that the condensate effect is about two times that of the thermal part in the dipolar system. Due to the relative smallness of dipole-dipole interaction with respect to the contact interaction in current dipolar Bose-Einstein condensation, we suggest to measure the dipolar effect by tuning the scattering length to negligible small by the Feshbach resonance technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.