Abstract

Transition state theory (TST) methods are useful for predicting adsorbate diffusivities in nanoporous materials at time scales inaccessible to molecular dynamics (MD). Most TST applications treat the nanoporous framework as rigid, which is inaccurate in highly flexible materials or where adsorbate dimensions are comparable to the size of pore apertures. In this study, we demonstrate two computationally efficient TST methods for simulating adsorbate diffusion in nanoporous materials where framework flexibility has a significant influence on diffusion. These methods are applied to light gas diffusion in porous organic cage crystal 3 (CC3), a highly flexible molecular crystal that has shown promise in gas separation applications. Diffusion in CC3 is modeled as a series of uncorrelated adsorbate hops between cage molecules and the voids between adjacent cages. The first method we applied to compute adsorbate hopping rates in CC3 is implicit ligand sampling (ILS). In ILS TST, hopping rates are calculated in an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call