Abstract

The results of transition state theory are derived rigorously in the general context of ergodic dynamical systems defined by a vector field on a Riemannian manifold. A new perspective on how to compute the dynamical corrections to the transition state theory transition frequency is given. Hamiltonian dynamical systems are considered a special case and the so-called Marcus formula for the rate constant is re-derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.