Abstract

Transition state theory (TST) is generalized to nonequilibrium systems with power-law distributions. The stochastic dynamics that gives rise to the power-law distributions for the reaction coordinate and momentum is modeled by Langevin equations and corresponding Fokker–Planck equations. It is considered that a system far away from equilibrium does not have to relax to a thermal equilibrium state with Boltzmann–Gibbs distribution, but asymptotically approaches a nonequilibrium stationary state with a power-law distribution. Thus, we obtain a possible generalization of TST rates to nonequilibrium systems with power-law distributions. Furthermore, we derive the generalized TST rate constants for one-dimensional and n-dimensional Hamiltonian systems away from equilibrium, and obtain a generalized Arrhenius rate for systems with power-law distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.