Abstract

The present study elucidates structural features related to the molecular mechanism in the carboxylation step of the reaction catalyzed by Rubisco. Starting from the initial X-ray Protein Data Bank structure of a Rubisco monomer, the reactive subsystem in vacuo is subjected to quantum chemical semiempirical and ab initio studies, while the effects of the protein environments are included by means of a hybrid quantum mechanical/molecular mechanical (QM/MM) approach. The QM/MM is used to characterize the transition structure for carboxylation inside the protein. The calculations were made with the AM1/CHARMM/GRACE scheme. Comparisons between the in vacuo and in situ transition structures show remarkable invariance with respect to geometric parameters, index and transition vector amplitudes. The transition state couples the carbon dioxide attack to the C2 center of the substrate in its dienol form with a simultaneous intramolecular hydrogen transfer from the C2 atom to the hydroxyl group linked to the C3 center. This study suggests that carboxylation may be simultaneously coupled to the activation of the C3 center in the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.