Abstract
The interatomic distances in the transition states of radical hydrogen atom abstraction reactions X•+HY → XH+Y• determined by quantum chemical calculations are systematized and generalized. It is shown that depending on the reaction centre structure, these reactions can be subdivided into classes with the same X...Y interatomic distance in each class. The transition state geometries found by the methods of intersecting parabolas and intersecting Morse curves are also presented. The X...H...Y fragments are almost linear, the hydrogen atom position being determined by the reaction enthalpy. The effects of triplet repulsion, electronegativities and radii of X and Y atoms, the presence of adjoining π-bonds, and steric effects on the X...Y interatomic distances are analyzed and characterized. The bibliography includes 62 references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.