Abstract

The transition state for beta-hydride elimination in alkyl groups on the Pt(111) surface has been probed by studying the effects of fluorine substitution on the barriers to beta-hydride elimination, DeltaE++(betaH). Four different fluoroalkyl groups have been formed on the Pt(111) surface by dissociative adsorption of four fluoroalkyl iodides: RCH(2)CH(2)-I (R = CF(3), CF(3)CH(2), and CF(3)CF(2)) and (CF(3))(2)CHCH(2)-I. In the absence of preadsorbed hydrogen, fluoroalkyl groups on the Pt(111) surface dehydrogenate via beta-hydride elimination to form unsaturated fluorocarbons and deposit hydrogen atoms onto the surface. Those hydrogen atoms then hydrogenate the remaining fluoroalkyl groups to produce fluoroalkanes that desorb rapidly from the surface. The kinetics of hydrogenation and fluoroalkane desorption are rate limited by the beta-hydride elimination step and thus serve as measures of the kinetics of beta-hydride elimination. The field effects of the fluorinated substituents increase the barriers to beta-hydride elimination with a reaction constant of rho(F) = 19 +/- 2 kJ/mol. The interpretation of this effect is that the beta-carbon atom in the transition state is cationic, [RC(delta+...)H]++, with respect to the reactant. The field effect of the fluorinated substituent energetically destabilizes the electron deficient beta-carbon atom in the transition state. This is consistent with observations made on the Cu(111) surface; however, the substituent effect is significantly smaller on the Pt(111) surface. On the Pt(111) surface, the transition state for beta-hydride elimination is less polarized with respect to the initial state alkyl group than on the Cu(111) surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.